Targeted Orphaned Domain May Lead to Drug Therapies for Nervous System Diseases and Inflammatory Processes
“Pentameric quaternary structure of the intracellular domain of serotonin type 3A receptors,” was published in the April issue of Scientific Reports. Along with her research team, Akash Pandhare, Ph.D., and Petar N. Grozdanov, Ph.D., Jansen’s research demonstrated for the first time that the serotonin type 3A (5-HT3A) ICD assembles into stable pentamers in solution in the absence of the other two domains, thought to be the drivers for oligomerization.
“We are especially interested in the superfamily of pentameric ligand-gated ion channels (pLGICs) that includes the nAChR, GABA, 5-HT3, and glycine families,” Jansen said. “The pLGICs function mainly as neurotransmitter receptors, transforming the chemical signal contained in the neurotransmitter into an electrical signal.”
The current therapies make it impossible to precisely hit one target because there are more than 40 different subunits in humans. All the drugs currently in clinical use, target the extracellular or transmembrane domains, which are structurally very similar across different subunits.
Jansen’s lab focused on the intercellular domain (ICD), which is diverse. By targeting this domain, the research may lead to new drug therapies without undesired effects. Years ago, the ICD was considered extremely disordered. This research is the first to show the ordered assembly of five ICDs.
“This finding was very unexpected” Jansen said. “Compare this to spaghetti. If you put spaghetti into a boiling pot, you never see groups of five and only groups of five. Many labs research pLGICs, but often remove the ICDs for structural studies because IDCs were believed to be disordered just like spaghettis. Yet this research study found this domain makes very stable arrangements. This is the first indication that it is structurally important, and the first stepping stone for future drug targets.”
“Our results suggest the ICD constitutes an oligomerization domain,” Jansen said. “This novel role significantly adds to its known contributions in receptor trafficking, targeting and functional fine-tuning. The innate diversity of the ICDs with sizes ranging from 50 to 280 amino acids indicates new methodologies need to be developed to determine the structures of these domains. The use of soluble ICD proteins that we report in the present study constitutes a useful approach to address this gap.”
Now with the intracellular domain alone, researchers can develop screening methods to identify small molecules that bind to this domain, as well as study interactions with cytosolic proteins. This domain may have the key to treating diseases like epilepsy, anxiety, Alzheimer’s disease and several inflammatory processes.
Related Stories
TTUHSC School of Nursing to Celebrate New YWCA Location
Community members in central Lubbock now have access to health care services and prenatal programs at one location inside the YWCA.
A Rite of Passage for Next Generation of Physicians
Students in TTUHSC's School of Medicine Class of 2028 received their first white coat and pledged their commitment to the medical profession at the White Coat Ceremony Friday (July 26) at the Buddy Holly Hall of Performing Arts and Sciences.
How Does Your Garden Grow?
As spring approaches, some people’s thoughts turn to gardening. Whether it’s a flower garden they desire or a vegetable garden want to have, they begin planning what they’ll plant and what they need to do to ensure a successful garden.
Recent Stories
ASCO GU Symposium Announces New Findings on Tumor Reduction and Survival Outcomes in Advanced Renal Cell Carcinoma
Thomas E. Hutson, D.O., Pharm.D., Ph.D., chief of the Hematology Oncology Division in the Department of Internal Medicine at TTUHSC and director of the UMC Cancer Center, shared groundbreaking findings from the landmark CLEAR study.
Guest Named Abilene Regional Dean of the Texas Tech University Health Sciences Center School of Nursing
Heather Guest, Ph.D., R.N., has been named the Texas Tech University Health Sciences Center (TTUHSC) School of Nursing regional dean in Abilene. TTUHSC School of Nursing Dean Holly Wei, Ph.D., R.N., made the announcement, effective Jan. 1, 2025.
Researcher Develops Method to Measure Blood-Brain Barrier Permeability Accurately
Quentin R. Smith, Ph.D., from the Department of Pharmaceutical Sciences at the TTUHSC Jerry H. Hodge School of Pharmacy, sought to reconcile discrepancies in the field and provide accurate methods for measuring permeability over a very broad range.