TTUHSC Researcher Receives National Institutes of Health Grant

Dr. Reddy in research lab

The National Institutes of Health (NIH) awarded P. Hemachandra Reddy, Ph.D., the executive director and chief scientific officer of Texas Tech University Health Sciences Center Garrison Institute on Aging, a $1.9 million, five-year R01 grant from the Neurological Disorders and Stroke Institute of the National Institutes of Health. 

Reddy’s grant, “Mitochondrial Fragmentation and Neurodegeneration in Huntington’s Disease,” will study the protective effects of mitochondria division inhibitor 1 (Mdivi1) that inhibits excessive mitochondrial division in mouse models of Huntington’s disease. The research is an extension of Reddy’s postdoctoral work he conducted at the National Human Genome Research Institute of the NIH.

Huntington’s disease is a fatal genetic disorder that causes the degeneration of brain cells in the motor control regions of the brain. Huntington’s disease typically begins between 30 and 50 years of age, and its symptoms progressively worsen. These symptoms include impaired coordination and uncontrolled movements of the limbs (chorea), abnormal body posture, and changes in behavior, emotion, judgment and cognition. People with Huntington’s disease also develop impaired slurred speech and difficulty swallowing. Currently, more than 30,000 Americans have the disease.

The Huntington’s disease gene was identified in 1993 and was found to carry an expanded polyglutamine repeats or CAG repeats as a dominant mutation in a protein called huntingtin. Since the discovery of the gene, tremendous progress has been made in understanding the biology of huntingtin, which has been found to target neurons in the midbrain region. Research from the Reddy Laboratory at the TTUHSC Garrison Institute on Aging has implicated multiple cellular changes in Huntington’s disease-affected neurons during Huntington’s disease progression, including abnormal mitochondrial dynamics, defective energy metabolism, abnormal protein-protein interactions, defective axonal transport and synaptic damage.

Reddy and his research team studied the mitochondrial defects in Huntington’s disease-affected neurons. Recently, they identified a cause of mitochondrial defects in Huntington’s disease-affected neurons and the interaction between the mutant huntingtin and Drp1, a mitochondrial division protein. The research found that an increase in Drp1 leads to excessive fragmentation of mitochondria. 

In the newly funded NIH research, Reddy and his research team will determine whether a partial reduction of Drp1 protects Huntington’s disease-affected neurons from excessive mutant huntingtin-induced fragmentation of mitochondria, mitochondrial dysfunction and synaptic toxicities. Both genetic and pharmacological approaches to determine the effects of reduced Drp1 in Huntington’s disease-affected neurons will be used.

The outcome of Reddy’s research will clarify the genetic and pharmacological strategies that may reduce excessive mitochondrial fragmentation and thus increase neuronal survival and synaptic functions in Huntington’s disease-affected neurons.

 

 Reddy

Related Stories

Noise-Induced Hearing Loss in Rural Adolescents

Leigh Ann Reel, Au.D., Ph.D., CCC-A, discussed the causes and prevention strategies for noise-induced hearing loss, particularly for adolescents in rural areas.

Willed Body Memorial Service Honors Those Who Donated

On Memorial Day each May, a service is conducted at the Texas Tech University Health Sciences Center Institute of Anatomical Sciences to pay respect to the Willed Body Program donors and their families.

Molecular Pathology Preceptorship: Unmatched Value and Experience

Ericka Hendrix, PhD, MB(ASCP)CM, Program Director and Associate Professor in the Master of Science in Molecular Pathology program in the School of Health Professions spoke about the program’s preceptorship.

Recent Stories

Research

Logsdon Receives Grant to Study Vascular Side of Traumatic Brain Injuries

Supported by a three-year, $578,211 grant from the National Institutes of Health-National Institute on Aging, Aric F. Logsdon, Ph.D., will study how brain endothelial cells, or blood vessels within the brain, handle the stressors of neuroinflammation.

Health

Historic collaboration brings shipping container-based health care clinic to Jeff Davis County

Texas A&M Health and TTUHSC joined with the student-led organization, Texas A&M BUILD—along with local leadership and other collaborators—to unveil a new, innovative medical care facility for a Trans-Pecos region rural community: a 40-foot, retro-fitted shipping container.

Research

Improving Health Care Access, Education Through Research

The service area for TTUHSC, a recognized leader in academic health and biomedical research training, encompasses 121 Texas counties.